Another summable $C\sb{\Omega }$-group

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Commutative Group Algebras of Σ-summable Abelian Groups

In this note we study the commutative modular and semisimple group rings of σ-summable abelian p-groups, which group class was introduced by R. Linton and Ch. Megibben. It is proved that S(RG) is σ-summable if and only if Gp is σ-summable, provided G is an abelian group and R is a commutative ring with 1 of prime characteristic p, having a trivial nilradical. If Gp is a σ-summable p-group and t...

متن کامل

λ-Almost Summable and Statistically (V, λ)-Summable Sequences

King [3] introduced and examined the concepts of almost A-summable sequence, almost conservative matrix and almost regular matrix. In this paper, we introduce and examine the concepts of λ-almost A-summable sequence, λalmost conservative matrix and λ-almost regular matrix. Also we introduce statistically (V, λ)-summable sequence.

متن کامل

Summable gaps

It is proved, under Martin’s Axiom, that all (ω1, ω1) gaps in P(N) / fin are indestructible in any forcing extension by a separable measure algebra. This naturally leads to a new type of gap, a summable gap. The results of these investigations have applications in Descriptive Set Theory. For example, it is shown that under Martin’s Axiom the Baire categoricity of all ∆3 non-∆ 1 3-complete sets ...

متن کامل

Integrals and Summable Trigonometric Series

is that of suitably defining a trigonometric integral with the property that, if the series (1.1) converges everywhere to a function ƒ(x), then f(x) is necessarily integrable and the coefficients, an and bn, given in the usual Fourier form. It is well known that a series may converge everywhere to a function which is not Lebesgue summable nor even Denjoy integrable (completely totalisable, [3])...

متن کامل

Another Monte Carlo Renormalization Group Algorithm

A Monte Carlo Renormalization Group algorithm is used on the Ising model to derive critical exponents and the critical temperature. The algorithm is based on a minimum relative entropy iteration developed previously to derive potentials from equilibrium configurations. This previous algorithm is modified to derive useful information in an RG iteration. The method is applied in several dimension...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Proceedings of the American Mathematical Society

سال: 1970

ISSN: 0002-9939

DOI: 10.1090/s0002-9939-1970-0262355-1